
Scheme-langserver: Treat Scheme Code Editing as the First-Class
Concern

WANG, Zheng
ufo5260987423@163.com

Institute of Scientific and Technical Information of China
Haidian District, Beijing, P. R. China

Abstract
Programmers have become increasingly reliant on modern
IDEs and editors due to their support for advanced language
features such as auto-completion, go-to-definition, and refer-
ence, which significantly reduce the mental burden during
programming. However, existing implementations for Scheme
language programming predominantly focus on REPL-driven
development, treating language features as secondary byprod-
ucts of code execution. To address this gap, Scheme-langserver,
an LSP (Language Server Protocol) implementation target-
ing R6RS-based Scheme programmers, treats code editing
as a first-class concern. By leveraging abstract interpreta-
tion, basic partial evaluation, and lightweight type infer-
ence, it provides robust tooling support comparable to main-
stream IDEs while preserving Scheme’s functional paradigm.
The main purpose of this paper is to explain how Scheme-
langserver works, its internal design, and how it differs from
other tools and methods.

1 Introduction
1.1 Background of Scheme Code Editing
The Scheme programming language has been shaped by a se-
ries of standardized reports, notably R5RS (1998) [1], R6RS
(2007) [6], and R7RS (2013) [5], which emphasize minimal-
ism and extensibility. These standards prioritize a small core
syntax (e.g., 23 syntactic forms in R5RS) while enabling
macro systems for domain-specific extensions. This design
philosophy aligns with Scheme’s historical role in computer
science education. For instance, the seminal textbook Struc-
ture and Interpretation of Computer Programs (SICP) lever-
ages R5RS Scheme’s simplicity to teach recursion, higher-
order functions, and meta-circular interpreters through im-
mediate REPL feedback. The language’s REPL-driven work-
flow allows students to iteratively test code fragments (e.g.,
(map square ’(1 2 3))), fostering an empirical understand-
ing of abstraction layers from lambda calculus to compiler
design.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’25, May 12–13 2025, Zurich, Switzerland
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.15384882

Scheme development traditionally revolves around the Read-
Eval-Print Loop (REPL), where code is incrementally eval-
uated and refined, or it’s named exploratory programming.
Developers are used to loading files dynamically, enabling
runtime updates without restarting the environment, quickly
executing a small piece of complete code, and concerning
themselves with what the execution says. This workflow is
profoundly enhanced by Emacs and its Geiser mode [3], which
seamlessly bridges code editing and REPL interaction. Geiser
enables bidirectional communication with a live Scheme pro-
cess, allowing developers to send S-expressions directly from
the editor buffer to the REPL for instant evaluation. It pro-
vides namespace-aware autocompletion, symbol definition
jumps, and inline macro expansion visualization, all while
preserving the REPL’s dynamic context. By integrating keystroke-
driven workflows with structural editing tools like Paredit,
Emacs transforms the REPL from a standalone prompt into
an interactive programming workspace, which aligns per-
fectly with Scheme’s ethos of linguistic abstraction and ex-
ploratory coding.

1.2 Problem & Challenge
REPL philosophy requires complete and syntactically valid
expressions for evaluation. This design assumes program-
mers work with self-contained code snippets, where each in-
put is a logically atomic unit. However, modern code editing
inherently involves incomplete or transitional states, such as
half-written functions, dangling parentheses, or placeholder
variables. For example, a developer might type (define (
factorial n) but pause to refine the base case, leaving the ex-
pression unresolved. The REPL cannot process such frag-
ments, forcing programmers to either manually construct
temporary completions (e.g., adding a dummy 0)) to test
partial logic, which pollutes the REPL’s namespace, or fre-
quently switch contexts between editing and evaluation, dis-
rupting mind flow.

Many tools attempt to bridge this gap through hybrid ap-
proaches. Emacs Geiser mode leverages the REPL’s runtime
state by capturing REPL’s stack trace. With approximately
“live” editing, it’s able to highlight the limited diagnostic is-
sues inline. Tree-sitter extracts all identifiers from the buffer
ignoring scoping rules, and offers them as completion can-
didates. This works for trivial cases but risks mismatches.
Especially when comparing to Java/Python’s mature ecosys-
tems, it seems the fundamental tension in the REPL-centric
development model and the static-analysis-driven workflows

https://doi.org/10.5281/zenodo.15384882

ELS’25, May 12–13 2025, Zurich, Switzerland WANG Zheng

haven’t seriously treated programmers’ modern IDE senses
yet.

The core challenge to implement Java/Python-like IDE
support for Scheme programming is to overcome the limits
of general static analysis. For example, Scheme’s hygienic
macro system allows users to redefine syntax for control
flow, variable declarations, and even package management.
And Geiser’s Chez Scheme support only directly involves
dynamic dependencies and imports corresponding symbols
by calling (environment-symbols (interaction-environment)). It ig-
nores incomplete programs because they can’t be executed
and it truely gets some information involving macro expan-
sion. This is also the most interesting thing in Scheme, and
if we imagine a state-of-the-art IDE having full support for
Scheme, we may notice macro programming is editing both
of IDE behavior and the program itself.

1.3 Scheme-langserver as A Solution
Scheme-langserver1 is a Language Server Protocol (LSP) [4]
implementation designed to bring modern IDE features, such
as autocompletion, go-to-definition, and type-inference-based
diagnostics(Fig. 1) to R6RS-compliant Scheme programmers.
Further more, unlike traditional REPL-driven tools like Geiser,
which rely on runtime evaluation, Scheme-langserver adopts
a hybrid approach combining static analysis, partial evalua-
tion, and abstract interpretation to approximate Scheme’s
dynamic semantics without requiring full code execution,
and to try to bridge the gap among every “live” code editing
by maintaining mind flow with static analysis information
over and over again. This is actually to treat code editing
instead of REPL as the first-class concern by avoiding dis-
traction caused by further information requirements.

For example, giving a code file Listing 1 having depen-
dency on (scheme-langserver util natural-order-compare) in Fig. 1,
building upon general experience, any code editing like switch-
ing (rnrs) between R6RS and R7RS, deleting a character, or
hovering specific words, may raise various LSP requests and
Scheme-langserver is supposed to over the limit of REPL
and to respond accrodingly. These responses may require re-
solving global identifiers via references in different files(e.g.,
line 8 refers natural-order-compare in Fig. 1), completing local
identifiers (e.g., line 7 claims parameter string-list), updat-
ing program dependencies(e.g., line 2 switches (rnrs) between
R6RS [6] and R7RS), hovering type inference diagnostic in-
formation as in Fig. 1, or even canceling working task by
involving peephole optimization, to skip current request and
work on next request.

Listing 1: Editing May Involve Different Scheme-langserver
Behaviors through LSP

1 (l i b ra ry (scheme - langserver example)
2 (import
3 (rnrs)

1https://github.com/ufo5260987423/scheme-langserver, https://
codeberg.com/ufo5260987423/scheme-langserver, https://gitee.com/
ufo5260987423/scheme-langserver

4 (scheme - langserver u t i l natural - order - compare)
)

5 (export sort - in - natural - order)
6 (de f ine sort - in - natural - order
7 (lambda (str ing - l i s t)
8 (sort natural - order - compare str ing - l i s t))))

In the rest of this paper, we present a systematic analysis
of how Scheme-langserver processes incomplete source code
to deliver actionable editor feedback. Section 2 details the
server’s architecture, focusing on its asynchronous request-
handling for minimizing latency during client-server com-
munication. Section 3 introduces a data-flow graph model
that unifies three core techniques, abstract interpretation for
approximating runtime state, partial evaluation for resolv-
ing static code fragments, and heuristic type inference for
programming experience improvement, while critically ex-
amining their limitations, particularly in handling hygienic
macros and mutable states. Finally, Section 4 synthesizes
our findings, emphasizes the differences in subsequent devel-
opment among Scheme-langserver and its counterparts, and
calls for community collaboration to address open challenges
in formalizing Scheme’s semantics for static tooling.

2 Engineering Affairs
2.1 Architecture & LSP Lifecycle
As illustrated in Fig. 2, Scheme-langserver’s established an
architecture for processing LSP requests spans 3 core do-
mains: virtual file system, request queue optimization, and
indexer/analyzer integration. The workflow adheres to the
LSP specification [4], wherein the server operates as an in-
dependent process communicating with editors via JSON-
RPC over standard I/O. The request lifecycle follows red
arrows in Fig. 2: first, raw JSON-RPC payloads are parsed
into structured request objects, bypassing editor-specific I/O
limitations; second, requests enter a FIFO queue of suspend-
able tasks; third, initialize or resolve in-memory buffers asyn-
chronously, via a unified virtual file system abstraction;finally,
trigger response.

This section elaborates on above components excluding
the indexer/analyzer, which is analyzed in Section 3.

2.2 Virtual File System
The virtual file system (VFS) maintains a real-time rep-
resentation of the project’s lexical and syntactic state, in-
stead of the complete semantic state, or the environment,
required by the REPL runtime. During initialization (Fig. 2),
the VFS constructs a hierarchical file-node graph rooted at
the project directory, with each node mapping to a docu-
ment that synchronizes source code. Upon receiving client
updates (e.g., textDocument/didChange), the VFS invali-
dates affected index-node subtrees and regenerates them us-
ing Chez Scheme’s default reader[2] coupled with positional
annotation (line/column spans, parent-child dependencies).
Combined with a fault-tolerant mechanism, the VFS iso-
lates syntactic or lexical discontinuities into independent

https://github.com/ufo5260987423/scheme-langserver
https://codeberg.com/ufo5260987423/scheme-langserver
https://codeberg.com/ufo5260987423/scheme-langserver
https://gitee.com/ufo5260987423/scheme-langserver
https://gitee.com/ufo5260987423/scheme-langserver

Scheme-langserver ELS’25, May 12–13 2025, Zurich, Switzerland

Figure 1: Scheme-langserver: Hover to Display Type Inference and Definition.

Figure 2: How Scheme-langserver Responds LSP Requests

AST fragments using parent-child dependency boundaries
and prevents corruption propagation. As detailed on the left-
hand side of Fig. 2, these index-node fragments interconnect

via library-node dependencies, forming a cross-file semantic
graph.

ELS’25, May 12–13 2025, Zurich, Switzerland WANG Zheng

Outside of the above graph, the key to understanding
is LSP’s [4] textual delta model: clients transmit character-
level edits rather than syntactic unit modifications. For Scheme
this means while modern editors commonly enforce parenthe-
sis balancing, LSP does not guarantee atomic S-expression
updates. Consequently, a critical constraint arises from par-
tial index-node updates and must instead reconstruct the
entire sandbox with necessary fault tolerance, which is a
trade-off ensuring syntactic validity at the cost of latency.
Fortunately, the textDocument/didChange request doesn’t
interleave other requests requiring semantic completeness
frequently, and additional mechanisms like request queue op-
timization make such latency tolerable.

The VFS’s novelty lies in its bidirectional binding of in-
complete code states to LSP workflows. As visualized in
Fig. 2’s red dashed elements, it enforces rule-based associa-
tions between raw text edits (red arrows) and analyzed AST
fragments (black arrows), enabling context-aware diagnos-
tics even during transitional code states.

2.3 Request Queue Optimization & Threaded
mechanism

Scheme-langserver facilitates a request queue to decouple the
request lifecycle into two distinct phases: scheduling and exe-
cution. As for scheduling, it applies peephole optimization to
asynchronously analyze API requests. More specifically, in-
stead of efficiency or syntax, the request optimization now fo-
cuses on cancelation, which means unresponsive requests can
be canceled. Here within queue context, Scheme-langserver
wraps each request with a suspendable task in order to check
whether they’re canceled during processing.

Upon dequeuing a request, a dedicated worker thread as-
sumes responsibility for the VFS operations, which includ-
ing document synchronization, dependency resolution, in-
memory buffer management and making response. LSP-specific
semantics (e.g., textDocument/didChange) invoke concur-
rent primitives such as thread pools for parallel I/O and
batched AST traversals, enabling non-blocking responsive-
ness during resource-intensive tasks like cross-module sym-
bol lookup.

This architecture ensures atomicity for critical paths (e.g.,
updating global symbol tables) while permitting asynchro-
nous execution of auxiliary operations (detailed in Section 3).

2.4 Testing and Accident Reproduction
The testing infrastructure of Scheme-langserver is structured
to validate both control and data flows, as visualized by the
red and black data pathways in Fig. 2. The system currently
maintains 154 comprehensive test cases spanning abstract
syntax tree and thread safe structure manipulations, JSON-
RPC serialization/deserialization, virtual file system opera-
tions and dependency resolution. This granular test cover-
age unprecedented among Scheme language LSP implemen-
tations, ensures behavioral consistency across edge cases like
partial S-expression evaluations and concurrent document
updates.

A pivotal innovation lies in its deterministic failure re-
production mechanism. By logging time-stamped request se-
quences alongside project state snapshots, developers can re-
play failure scenarios via log-driven execution: By re-injecting
captured client requests into a server instance and, program-
mers can interrupting execution at specific and freeze exter-
nal dependencies (e.g., filesystem calls) to maintain causal
consistency. This capability not only accelerates debugging
but also lowers the barrier for community contributions—
users can submit reproducible test cases as pull requests,
effectively crowdsourcing quality assurance.

3 Analyze Incomplete Source Code
3.1 Framework
Incomplete code introduces Scheme-langserver a halting prob-
lem, as arbitrary transient editor states may defy rigorous
formal analysis under Scheme’s dynamic semantics, prevent-
ing the system from explicitly determining termination or
endless continuation. More specifically, deterministic execu-
tion requires a constrained framework as in Fig. 3: First,
LSP initialization request triggers a dependency matrix to
partition file-nodes into isolated batches; Second within each
batch, files maintain mutual independence; Third, the ana-
lyzer sequentially processes batches while importing depen-
dencies exclusively from prior completed batches; Fourth,
within contexts explicitly bounded by preceding analysis phases,
lexical bindings (e.g., lambda parameters, let-bound vari-
ables) become resolvable; Finally, type inference proceeds
with well-defined semantic boundaries.

This section discusses how the indexer/analyzer degrades
the halting problem into a solvable problem by addressing
three Scheme-specific challenges with the above framework,
including contextual ambiguity in library resolution, heuris-
tic pattern matching for incomplete code, and indecisive type
inference. Furthermore, this section will also discuss how to
process self-defined macros.

3.2 Dependency Analysis
Unlike Python or Java, Scheme’s R6RS standard specifies a
runtime-dependent library mechanism, which means library
and import in Listing 1 don’t certainly perform library de-
pendencies under code editing scenario and detailed analy-
sis may cause computational complexity. To mitigate this,
Scheme-langserver imposes a static import graph assump-
tion: it extracts R6RS library identifiers and dependencies by
analyzing only the outermost S-expressions (e.g., (library ...)
or (import ...) forms) during initialization. So that the frame-
work in Fig. 3, its parallelization efficiency hinges on parti-
tioning the import such dependency graph into maximally
independent batches, a problem reducible to finding the min-
imum number of feedback vertex sets (FVS) to break cy-
cles. Since FVS computation is NP-hard, Scheme-langserver
adopts a linear-time heuristic algorithm:

• Degree-1 Pruning: Iteratively removes vertexes with
in/out-degree less than 1, as they cannot participate
in cycles.

Scheme-langserver ELS’25, May 12–13 2025, Zurich, Switzerland

Figure 3: How Scheme-langserver Indexes/Analyzes Parallelly.

• Virtual Super Vertex Aggregation: Groups remaining
cyclic sub-graphs into synthetic supernodes, treating
them as atomic units during batch allocation.

Considering cyclic dependency caused by code editing where
module A imports B, B imports C, and C imports A, the
above algorithm would first aggregate A, B, and C into a su-
per vertex and then process the super vertex sequentially
after all acyclic dependencies. While static import graph
assumption is adequate for such typical editing scenarios,
where incremental changes rarely introduce deep cycles and
the algorithm sacrifices optimal parallelism (super vertexes
are processed serially) to avoid combinatorial explosion, a
more serious scenario is the cycles caused by non-outermost
S-expressions editing that may intentionally entangles code-
bases.

Exampling with SRFI-103, it allows programmers to lo-
cate files containing libraries and to import them in run-
time. This flexibility introduces runtime-dependent symbol
resolution, where identical code files may yield divergent se-
mantic interpretations based on evaluation order or macro-
generated bindings. But taking a view of the halting prob-
lem, it indicates a limitation shared with LSP implementa-
tions for Scheme language, for that dynamic libraries may
cause premature termination leading to failure of binding

structure, or for careless handling may cause endless recur-
sion. The latter one is much more unacceptable to Scheme-
langserver and involves abstract interpretation and partial
evaluation.

3.3 Abstract Interpretation & Partial Evaluation
Most LSP requests necessitate Scheme-langserver to estab-
lish precise binding structures, where abstract interpretation
and partial evaluation serve as foundational mechanisms for
preventing infinite recursion during semantic analysis. As
codified in Table 1’s mapping between R6RS semantics in
the abstract domain and R6RS declaration patterns for par-
tial evaluation, the analysis engine employs a critical invari-
ant: When runtime resolution with fixed dependencies ex-
plicitly assigns specific semantics to a symbol per Table 1’s
schema - irrespective of nominal congruence with R6RS stan-
dard identifiers (e.g., (import (rename (rnrs)(define define1)))) or
syntactic completeness of outer S-expressions - the system
guarantees partial evaluation execution without calling to
analyzer itself, while bypassing full macro-expansion. This
strategy directly captures semantic claims about raw S-expressions,
always an index-node in VFS, through concrete domain pro-
jections, effectively decoupling syntactic analysis from dy-
namic evaluation phases.

Besides, its efficiency is decided mainly by a two-phase
process:

ELS’25, May 12–13 2025, Zurich, Switzerland WANG Zheng

Table 1: Semantics in Abstract Domain Trigger Identifier-capturing in Concrete Domain

Semantic Name in R6RS Standard Partial Evaluation Template
case-lambda (case-lambda clause ...)
define (define var expr)
define (define var)
define (define (var0 var1 ...) body1 body2 ...)
define (define (var0 . varr) body1 body2 ...)
define (define (var0 var1 var2 varr) body1 body2 ...)
define-condition-type (define-condition-type name parent constructor pred field ...)
define-enumeration (define-enumeration name (symbol ...) constructor)
define-ftype (define-ftype ftype-name ftype)
define-ftype (define-ftype (ftype-name ftype) ...)
define-property (define-property id key expr)
define-record (define-record name (fld1 ...) ((fld2 init) ...) (opt ...))
define-record (define-record name parent (fld1 ...) ((fld2 init) ...) (opt ...))
define-record-type (define-record-type record-name clause ...)
define-record-type (define-record-type (record-name constructor pred) clause ...)
define-structure (define-structure (name id1 ...) ((id2 expr) ...))
define-syntax (define-syntax keyword expr)
define-top-level-syntax (define-top-level-syntax symbol obj)
define-top-level-syntax (define-top-level-syntax symbol obj env)
define-top-level-value (define-top-level-value symbol obj)
define-top-level-value (define-top-level-value symbol obj env)
fluid-let (fluid-let ((var expr) ...) body1 body2 ...)
fluid-let-syntax (fluid-let-syntax ((keyword expr) ...) form1 form2 ...)
identifier-syntax (identifier-syntax tmpl)
identifier-syntax (identifier-syntax (id1 tmpl1) ((set! id2 e2) tmpl2))
lambda (lambda formals body1 body2 ...)
let (let ((var expr) ...) body1 body2 ...)
let (let name ((var expr) ...) body1 body2 ...)
let* (let* ((var expr) ...) body1 body2 ...)
let*-values (let*-values ((formals expr) ...) body1 body2 ...)
let-syntax (let-syntax ((keyword expr) ...) form1 form2 ...)
let-values (let-values ((formals expr) ...) body1 body2 ...)
letrec (letrec ((var expr) ...) body1 body2 ...)
letrec* (letrec* ((var expr) ...) body1 body2 ...)
letrec-syntax (letrec-syntax ((keyword expr) ...) form1 form2 ...)
syntax (syntax template)
syntax-case (syntax-case expr (literal ...) clause ...)
syntax-rules (syntax-rules (literal ...) clause ...)
with-syntax (with-syntax ((pattern expr) ...) body1 body2 ...)

• AST traversal with index-nodes: Resolves identifiers
using innermost lexical scope (e.g., let-bound shadows
top-level-bound).

• Cross-context validation backtrack ancestor index-nodes
or even dependency code documents: Validates the
route and construct an evidence chain against depen-
dencies to reject invalid references (e.g., accessing var0
outside its lambda must fail in Listing 1).

3.4 Type Inference
The addition of type inference in Scheme-langserver began
with observations of Typed Racket [8], in which additional
type annotations truely explain how programmers thought.

However, annotating as in Listing 2 line 1 (inst cons Symbol
Integer) may deprive programmers’ pleasure in Scheme lan-
guage’s flexibility. We wonder whether Scheme language could
conserve line 2 type information without annotations.

Listing 2: Typed Racket REPL: Such Cases Deprive Pro-
grammers’ Pleasure in Scheme Language’s Flexibility

1 > (map (ins t cons Symbol Integer) ’ (a b c d) ’ (1 2
3 4))

2 - : (L i s to f (Pairof Symbol Integer))
3 ’ ((a . 1) (b . 2) (c . 3) (d . 4))

Scheme-langserver ELS’25, May 12–13 2025, Zurich, Switzerland

An idea is to leverage semantic-driven type hints derived
from R6RS [6] to aid code comprehension. Considering an-
other example in Listing 3, procedure + can accept its pa-
rameter fuzzy as number? represented with the same predic-
tor. In order to formalize this kind of information, Scheme-
langserver annotates standard procedures/syntaxes with a
hand-made DSL (Domain Specific Language) like (number?
<- (number? ...)) for +, in which <- indicates a function type,
the left is the return type, the right is the parameter types
and “...” is a shortcut omitting repeated annotations. So,
combined with type variables denoting index-nodes and such
annotations, the system constructs a constraint graph with
abstract interpretation and partial evaluation.

LSP hover and auto-completion requests execute type in-
ference through constraint solving bound to specific index-
nodes’ type variables. Within the Hindley-Milner framework [7],
this manifests as a triangular substitution mechanism that
achieves type unification while propagating contextual type
information bidirectionally across S-expressions. Notably, this
process necessitates interprocedural analysis integration as
type constraints propagate beyond local lexical boundaries
through identifier caller and callee. This hybrid approach
ensures principal typing properties are preserved while ac-
commodating Scheme’s dynamic evaluation characteristics.

Listing 3: Parameter fuzzy has Type number?
1 (lambda (fuzzy) (+ 1 fuzzy))

Of course, this system can’t be that powerful like in many
other main stream typed languages, and following are some
special tips:

• Conservative Assumptions: Type inference always pro-
cesses executable code, no matter what code editing
is performing. This means type inference in Scheme-
langserver always plays an assistance role by giving
useful information instead of restrictions. Especially
when it completes identifiers, type-matching ranks com-
pletion items higher instead of filtering them out. Also
such types can’t diagnose any code.

• No Runtime Validation: Types reflect static code struc-
ture, ignoring dynamic mutations (e.g., set!).

• Macro Blind Spots: Unexpanded macros are treated as
syntactic literals, deferring type resolution to runtime.

3.5 Macro Analysis
Scheme-langserver intentionally avoids built-in analysis of
user-defined macros due to the inherent challenges of recon-
ciling Scheme’s hygienic macro system with static tooling
expectations. Hygienic macros, while powerful, introduce se-
mantic unpredictability at edit-time, macro expansions may
generate context-sensitive identifiers (e.g., via gensym) or re-
define control flow in ways that defy static inference without
full evaluation. For example, a macro like (define-syntax loop (
syntax-rules ()((_)(loop)))...) could create unbounded recursion
during expansion, stalling analysis.

To balance flexibility and performance, the system cur-
rently adopts manual rule paradigm. By defining custom

pattern-matching templates and registering on abstract in-
terpretation, programmers can easily specify whether to treat
macros as syntactic literals, identifier declaration or type an-
notation.

4 Conclusion
Scheme-langserver represents a pragmatic attempt to rec-
oncile Scheme’s dynamic, macro-centric philosophy with the
static tooling expectations of modern development workflows.
While its current architecture achieves usable code comple-
tion and cross-module navigation for R6RS-compliant code,
significant opportunities remain to align the tool more closely
with Scheme’s full expressive power. Our roadmap prioritizes
2 interconnected goals:

• User-Defined Macro Rule Integration: A forthcoming
macro transformer interface will allow programmers
to declaratively specify how custom macros should be
interpreted during static analysis. For instance, users
could define expansion templates for a (for-loop (i 0 10)
...) macro, enabling identifier resolution within loop
bodies without full evaluation. Besides this, the sys-
tem will also enable macro expansion analysis to auto-
matically catch identifier declarations.

• Backward Compatibility and Maintenance: All enhance-
ments will preserve existing capabilities, including par-
allel AST traversal, heuristic type inference, and vir-
tual file system optimizations.

We must emphasize that Scheme-langserver exhibits unique
architectural virtues warranting deep community engagement
to unlock its full potential, as it profoundly prioritizes mod-
ern programming assistance features’ impact on developer
experience through meticulously engineered and modular-
ized code infrastructure compared to alternatives like Geiser,
Scheme-lsp-server, and Racket-langserver, whose implemen-
tations lack equivalent systematic integration of real-time
semantic validation, version-controlled dependency tracking,
and IDE-grade code intelligence services that Scheme-langserver’s
ordered abstraction layers inherently enable for future exten-
sibility. The Scheme community’s participation is critical to
realizing this vision. We invite contributors to test the sys-
tem with real-world code bases and issue bugs and codify
expansion rules for common libraries (e.g., SRFIs).

By bridging Scheme’s REPL-driven heritage with modern
tooling paradigms, scheme-langserver aims to empower de-
velopers without compromising the language’s ethos of mini-
malism meets expressivity. This effort underscores a broader
truth: even in an era dominated by static typing, dynami-
cally typed languages can thrive through adaptive tooling
and community-driven innovation.

References
[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, and

M. Wand. Revised5 report on the algorithmic language scheme.
Higher-Order and Symbolic Computation, 11(1), 1998.

[2] R. Kent Dybvig. The development of chez scheme. In John H.
Reppy and Julia Lawall, editors, Proceedings of the 11th ACM
SIGPLAN International Conference on Functional Programming,

ELS’25, May 12–13 2025, Zurich, Switzerland WANG Zheng

ICFP 2006, Portland, Oregon, USA, September 16-21, 2006, pages
1–12. ACM, 2006.

[3] jao. Emacs geiser, 2023. URL https://gitlab.com/emacs-geiser.
[Online; accessed 26-May-2023].

[4] Microsoft. Language server protocol, 2023. URL https://microsoft.
github.io/language-server-protocol/. [Online; accessed 26-May-
2023].

[5] Alex Shinn, John Cowan, Arthur A Gleckler, et al. Revised 7 re-
port on the algorithmic language scheme. Scheme Language Steer-
ing Committee, Rep. R7RS, 2013.

[6] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van
Straaten, Robert Bruce Findler, and Jacob Matthews. Revised6
Report on the Algorithmic Language Scheme. Cambridge Univer-
sity Press, 2010. ISBN 978-0-521-19399-3.

[7] Martin Sulzmann. A general type inference framework for hind-
ley/milner style systems. In Herbert Kuchen and Kazunori Ueda,
editors, Functional and Logic Programming, 5th International
Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Pro-
ceedings, volume 2024 of Lecture Notes in Computer Science,
pages 248–263. Springer, 2001. doi: 10.1007/3-540-44716-4_16.
URL https://doi.org/10.1007/3-540-44716-4_16.

[8] Sam Tobin-Hochstadt. Tutorial: Typed racket. In Christian Quein-
nec and Manuel Serrano, editors, Proceedings of ELS 2013 - 6th
European Lisp Symposium, Madrid, Spain, June 3-4, 2013, page 26.
ELSAA, 2013. URL https://european-lisp-symposium.org/static/
proceedings/2013.pdf#page=32.

WANG, Zheng„

https://gitlab.com/emacs-geiser
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://doi.org/10.1007/3-540-44716-4_16
https://european-lisp-symposium.org/static/proceedings/2013.pdf#page=32
https://european-lisp-symposium.org/static/proceedings/2013.pdf#page=32

	Abstract
	1 Introduction
	1.1 Background of Scheme Code Editing
	1.2 Problem & Challenge
	1.3 Scheme-langserver as A Solution

	2 Engineering Affairs
	2.1 Architecture & LSP Lifecycle
	2.2 Virtual File System
	2.3 Request Queue Optimization & Threaded mechanism
	2.4 Testing and Accident Reproduction

	3 Analyze Incomplete Source Code
	3.1 Framework
	3.2 Dependency Analysis
	3.3 Abstract Interpretation & Partial Evaluation
	3.4 Type Inference
	3.5 Macro Analysis

	4 Conclusion
	References

